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Objective: To investigate the impact of blood pressure (BP) on the Doppler echocardiographic (Doppler-echo)
evaluation of severity of aortic stenosis (AS).
Methods: Handgrip exercise or phenylephrine infusion was used to increase BP in 22 patients with AS.
Indices of AS severity (mean pressure gradient (DPmean), aortic valve area (AVA), valve resistance,
percentage left ventricular stroke work loss (% LVSW loss) and the energy loss coefficient (ELCo)) were
measured at baseline, peak BP intervention and recovery.
Results: From baseline to peak intervention, mean (SD) BP increased (99 (8) vs 121 (10) mm Hg, p,0.001),
systemic vascular resistance (SVR) increased (1294 (264) vs 1552 (372) dyne6s/cm5, p,0.001) and mean
(SD) transvalvular flow rate (Qmean) decreased (323 (67) vs 306 (66) ml/s, p = 0.02). There was no change in
DPmean (36 (13) vs 36 (14) mm Hg, p = NS). However, there was a decrease in AVA (1.15 (0.32) vs 1.09
(0.33) cm2, p = 0.02) and ELCo (1.32 (0.40) vs 1.24 (0.42) cm2, p = 0.04), and an increase in valve
resistance (153 (63) vs 164 (74) dyne6s/cm5, p = 0.02), suggesting a more severe valve stenosis. In contrast,
% LVSW loss decreased (19.8 (6) vs 16.5 (6)%, p,0.001), suggesting a less severe valve stenosis. There was
an inverse relationship between the change in mean BP and AVA (r = –0.34, p = 0.02); however, only the
change in Qmean was an independent predictor of the change in AVA (r = 0.81, p,0.001).
Conclusions: Acute BP elevation due to increased SVR can affect the Doppler-echo evaluation of AS severity.
However, the impact of BP on the assessment of AS severity depends primarily on the associated change in
Qmean, rather than on an independent effect of SVR or arterial compliance, and can result in a valve
appearing either more or less stenotic depending on the direction and magnitude of the change in Qmean.

T
ransvalvular pressure gradient and aortic valve area (AVA)
are the standard indices to determine the haemodynamic
severity of aortic stenosis (AS).1 2 However, a patient’s

physiological state can affect these indices and therefore the
assessment of AS severity. Pressure gradients and AVA vary
with transvalvular flow and flow-mediated forces.3–10 Valve
resistance, % left ventricular stroke work loss (% LVSW loss)
and the energy loss coefficient (ELCo) have been proposed as
alternative indices of AS severity that may be less sensitive to
transvalvular flow.7 11–21 However, this has not been corrobo-
rated in individual patients when transvalvular flow was
altered using exercise or inotropic infusion.6 9

The impact of blood pressure (BP) on the assessment of AS
severity has received less attention.2 Traditionally, low systolic
BP (SBP) and a decreased pulse pressure have been considered
signs of severe AS, whereas the presence of hypertension
excluded severe AS.22 However, recent data demonstrate that
hypertension commonly coexists with and is a risk factor for
AS.23–27 Hypertension can lead to an underestimation of AS
severity on physical examination.22 Furthermore, BP and
systemic vascular resistance may influence the assessment of
the haemodynamic severity.2 In a catheterisation study, Laskey
et al28 observed a decrease in transvalvular pressure gradient
and a potential underestimation of AS severity when peripheral
resistance was increased. Similarly, induction of hypertension
in an animal model of supravalvular AS resulted in a decrease
in pressure gradient and an increase in the area of the
supravalvular stenosis.29 In contrast, pressure gradient
increased and valve area decreased when systemic vascular
resistance was increased in an in vitro model of AS, leading to a
potential overestimation of the AS severity.30 AS and hyperten-
sion commonly coexist in our ageing population, and the
interaction of systemic BP with the evaluation of AS severity

needs to be better understood to manage patients optimally.31 32

The purpose of this study was to investigate the effects of
systemic BP on the assessment of AS severity using Doppler
echocardiography (Doppler-echo) in patients with valvular AS.

METHODS
Study population
This was a transversal study of 22 patients with isolated
valvular AS (aortic and mitral regurgitation (1+) who under-
went echocardiography at the University of Ottawa Heart
Institute, Ottawa, Ontario, Canada. Patients were enrolled if
they were >18 years of age, in sinus rhythm and had an
abnormal aortic valve with a transvalvular velocity >2.5 m/s.
Patients were excluded if they had severe hypertension (.180/
110 mm Hg), recent acute coronary syndrome or cerebrovas-
cular accident (during the past 6 months), Canadian
Cardiovascular Society class III–IV angina pectoris, New York
Heart Association class III–IV congestive heart failure, severe
left ventricular dysfunction (ejection fraction (EF) ,30%) or
symptomatic peripheral vascular disease. The study was
approved by the institutional review board and all subjects
gave written informed consent.

Abbreviations: AS, aortic stenosis; AVA, aortic valve area; BP, blood
pressure; CO, cardiac output; Doppler-echo, Doppler echocardiography;
EF, ejection fraction; ELCo, energy loss coefficient; LV, left ventricular;
LVOT, left ventricular outflow tract; % LVSW loss, percentage left ventricular
stroke work loss; DPmax, maximum transvalvular pressure gradient; DPmean,
mean transvalvular pressure gradient; Qmean, mean transvalvular flow rate;
SAC, systemic arterial compliance; SBP, systolic blood pressure; SV, stroke
volume; SVR, systemic vascular resistance
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Study protocol
Baseline supine brachial BP was measured in the non-
dominant arm using a mercury sphygmomanometer after
5 min of rest. Each patient underwent a baseline resting
Doppler-echo examination. Echocardiographic data were stored
on high-density magneto-optical disks for later off-line
analysis.

Left ventricular outflow tract (LVOT) diameter was obtained
using two-dimensional echocardiography, LVOT velocity using
pulsed-wave Doppler and transvalvular velocity using contin-
uous wave Doppler, as described previously.9 The ascending
aorta diameter was measured at the sinotubular junction in the
parasternal long-axis view. Left ventricular (LV) volumes were
derived by the biplane method of discs.

Following the baseline examination, patients underwent a
BP intervention protocol using either handgrip exercise or
phenylephrine infusion.

Handgrip protocol
Patients were instructed to use their dominant hand to perform
rhythmic handgrip exercise (30 contractions/min) at 40% of
their maximum voluntary contraction using a calibrated
dynamometer. Handgrip exercise was performed for 8 min,
with acquisition of Doppler-echo and BP measurements during
the final 2 min. Doppler-echo and BP measurements were
repeated in recovery after 5 min of rest.

Phenylephrine protocol
Patients underwent a graded intravenous phenylephrine infu-
sion protocol as described previously from our institution
(University of Ottawa Heart Institute, Ontario, Canada).33 The
phenylephrine infusion was started at 0.4 mg/kg/min and
increased to 0.8, 1.6 and 2.4 mg/kg/min at 6 min intervals. The
infusion was discontinued if SBP increased .40 mm Hg,
diastolic BP increased .20 mm Hg, or the patient developed
intolerable symptoms or ventricular arrhythmias. Doppler-echo
and BP data were acquired in the last 2 min of the final
infusion rate. Doppler-echo and BP data were repeated in
recovery 20 min after discontinuation of the phenylephrine
infusion.

Doppler-echo haemodynamic analysis
Doppler-echo measurements were averaged from 3 to 5 cardiac
cycles. LVOT area (CSALVOT) was calculated from the diameter
using a circular assumption. Stroke volume was calculated from
the LVOT and transvalvular velocity time integrals (VTILVOT,
VTIAS), as34:

SV = VTILVOT6CSALVOT

Mean transvalvular flow rate (Qmean) was derived by dividing
stroke volume by the systolic ejection time, and cardiac output
(CO) by multiplying stroke volume and heart rate. Systemic
vascular resistance (SVR) was estimated as:

SVR = 806(mean BP)/CO
where mean BP was obtained using a mercury sphygmoman-
ometer. Systemic arterial compliance (SAC) was calculated as35:

SAC = SV/(SBP–DBP)
where SBP and DBP are the systolic and diastolic BPs.

Doppler-echo indices of AS severity
Peak transvalvular pressure gradient (DPmax) was calculated
using the peak transvalvular (Vmax) and LVOT velocity (VLVOT),
and the modified Bernoulli equation34:
DPmax = 46(Vmax

2–VLVOT
2)

Mean transvalvular pressure gradient (DPmean) was obtained
by averaging instantaneous pressure gradients over the ejection
period. AVA was calculated by continuity equation,5 36 37 where:

AVA = (VTILVOT/VTIAS) 6CSALVOT

Valve resistance was calculated as38:
Resistance = (DPmean/Qmean)61333

% LVSW loss was derived as9 19 20:
% LVSW loss = (DPmean/LVPmean)6100%

where LVPmean is the mean systolic left ventricular pressure,
calculated by adding the SBP and DPmean.
The ELCo was calculated as21:

ELCo = (AVA6Ao)/(Ao–AVA)
where Ao is the ascending aorta area.

Statistical analysis
Data are expressed as mean (SD). Differences between indices
of AS severity at baseline, BP intervention and recovery were
assessed by analysis of variance with repeated measures. The
relationships between the change in indices of AS severity and
the change in haemodynamic variables were compared using
least-squares linear regression analysis. Correlations were
described by Pearson’s correlation coefficient. Stepwise linear
regression analysis was used to identify haemodynamic
variables on univariate analysis that were independent pre-
dictors of the change in an index of AS severity. A p value
(0.05 was considered significant.

RESULTS
Patient characteristics
Table 1 shows the demographic and baseline Doppler-echo data
in the 22 patients. In all, 16 (72%) patients had hypertension
and 4 (18%) patients had symptomatic coronary artery disease.
The aetiology of AS was degenerative (trileaflet) in 11 patients,
bicuspid aortic valve disease in 10 patients and indeterminate
in 1 patient. Baseline DPmean (SD) was 36 (12) mm Hg (17–
62 mm Hg) and AVA was 1.15 (0.32) cm2 (0.72–1.82 cm2).

Haemodynamic changes during BP intervention
BP was altered by exercise handgrip in 18 patients and by
phenylephrine infusion in 4 patients. There were no adverse
events in the exercise handgrip cohort, and all patients
completed the protocol. Two patients undergoing phenylephr-
ine infusion reported minor symptoms of flushing at 1.6 mg/kg/

Table 1 Demographic and baseline
echocardiographic characteristics of the total
cohort (n = 22)

Variable Mean (SD)

Clinical characteristics
Age (years) 70 (10)
Gender (M:F) 16:6
BSA (cm2) 1.96 (0.21)

Haemodynamic variables
Heart rate (bpm) 62 (8)
BP (mm Hg) 143 (14)/77 (9)
Stroke volume (ml) 104 (19)
Qmean (ml/s) 323 (67)
LV EF (%) 73 (8)

Stenotic indices
DPmean (mm Hg) 36 (13)
AVA (cm2) 1.15 (0.32)
Resistance (dyne6s/cm5) 153 (63)
% LVSW loss (%) 19.8 (6.3)
ELCo (cm2) 1.32 (0.4)
AS severity (based on AVA)
Mild: moderate: severe

4:10:8

AS, aortic stenosis; AVA, aortic valve area; BP, blood pressure;
BSA, body surface area; EF, ejection fraction; ELCo, energy loss
coefficient; LV, left ventricular; % LVSW loss, percentage left
ventricular stroke work loss index; DPmean, mean transvalvular
pressure gradient; Qmean, mean transvalvular flow rate.
Values in parentheses are the SD.
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min; however, the infusion protocol did not have to be
discontinued.

Table 2 shows the haemodynamics at baseline, peak BP
intervention and recovery. From baseline to peak intervention,
SBP increased by 27% (p,0.001) and mean BP increased by
22% (p,0.001). All patients demonstrated an increase in SBP
and mean BP (fig 1). The increase in BP was similar in the
handgrip and phenylephrine intervention cohorts (Dmean (SD)
BP 21 (10) vs 26 (6) mm Hg; p = 0.22). SVR increased by 20%
(p,0.001) and SAC decreased by 30% (p,0.001). There was no
significant change in stroke volume from baseline to interven-
tion, although Qmean decreased by 5% (p = 0.02; fig 1). The
change in Qmean was similar in the handgrip and phenylephrine
cohorts (–19 (31) vs –6 (38) ml/s; p = 0.54). LV EF did not
change from baseline to intervention (73 (8) vs 72 (9)%;
p = NS).

Effect of change in blood pressure on indices of AS
severity
Table 2 shows the indices of AS severity at baseline, peak BP
intervention and recovery, and fig 2 shows the individual
changes in Qmean, DPmean and AVA. There was no change in
DPmean from baseline to intervention (fig 3). In contrast, AVA
decreased from 1.15 (0.32) to 1.09 (0.32) cm2 (p = 0.02; fig 3).
In all, 14 of the 22 patients demonstrated a decrease in AVA
with the increase in BP (fig 4). The change in AVA from
baseline to peak BP intervention ranged from –0.26 to
+0.11 cm2. Notably, 5 of the 22 (23%) patients had a change
in AVA that crossed a threshold of 1.5 or 1.0 cm2, thus
changing the classification of AS severity according to the
American College of Cardiology/American Heart Association
Task Force on Practice guidelines.1 The valve stenosis appeared
more severe in four patients (two patients changed from mild
to moderate AS; two patients changed from moderate to severe
AS) and less severe in one patient (severe to moderate AS). The
change in AVA with the BP intervention was not related to
baseline AS severity (r = –0.06; p = NS).

SBP and mean BP were found to be lower at recovery than
baseline, although Qmean was similar. There was no difference
between the average DPmean and AVA at baseline and recovery
in the study cohort. However, for individual patients, the
change in AVA at either peak BP intervention or recovery
ranged from –0.26 to +0.26 cm2 of the baseline AVA.

Valve resistance, ELCo and % LVSW loss were also affected by
the BP intervention (fig 5). From baseline to peak BP
intervention, valve resistance increased (p = 0.02) and ELCo
decreased (p = 0.04), giving the appearance that the valve

stenosis was more severe at a higher BP. In all, 15 of the 22
patients had an increase in valve resistance and 14 patients had
a decrease in ELCo. In contrast, the valve stenosis appeared less
severe at a higher BP when assessed by % LVSW loss
(p,0.001). Of the 22 patients, 21 had a decrease in % LVSW
loss with the BP intervention. There was no difference between
baseline and recovery valve resistance, ELCo or % LVSW loss.

Handgrip and phenylephrine infusion interventions resulted
in similar changes in the indices of AS severity.

Relationship between the change in indices of AS
severity, BP and transvalvular flow rate
The relationship between the change in mean BP and the
change in AVA was examined by plotting the change from
baseline to intervention and from baseline to recovery (n = 44).
The change in AVA had an inverse linear relationship with the
change in mean BP (r = –0.34; p = 0.026; fig 6). Similar inverse
relationships were observed for the change in AVA and the
change in SBP or SVR (table 3). The change in AVA had a direct
linear relationship with the change in SAC. Importantly, there
was a strong linear relationship between the change in AVA
and the change in Qmean (r = 0.81; p,0.001; fig 6). Only the
change in Qmean was an independent predictor of the change in
AVA (table 3). The change in BP, SVR and SAC had no
independent effect on the change in AVA.

The change in Qmean was also the only independent predictor
of the change in valve resistance and ELCo. In contrast, change
in Qmean did not predict the change in % LVSW loss. The change
in SBP and change in SAC were independent predictors of the
change in % LVSW loss. No haemodynamic variable predicted
the change in DPmean, although the change in DPmean was
inversely related to the change in AVA (r = –0.43, p = 0.004).

DISCUSSION
The management of patients with AS requires an evaluation of
the symptomatic status and an accurate measurement of the
severity of valve stenosis.1 2 The latter is required to verify that
the degree of valve stenosis is severe enough to account for a
patient’s symptoms. In addition, serial assessment of AS
severity may identify patients at increased risk for the
development of symptoms or an adverse event.39–41 However,
the BP may differ between serial assessments, yet the impact of
a difference in BP on the assessment of AS severity has received
little study, with conflicting results.28–30

In this study, handgrip exercise and phenylephrine infusion
resulted in a significant increase in BP and SVR, with minimal
effect on heart rate, ventricular dimensions or EF. DPmean

Figure 1 Distribution of mean blood pressure (BP, panel A) and mean transvalvular flow rate (Qmean, panel B) at baseline, peak BP intervention and
recovery in the 22 patients.
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remained constant, despite the increase in BP. Presumably, LV
systolic pressure increased in parallel with the acute augmenta-
tion of arterial pressure. In contrast, AVA decreased, resulting
in the valve stenosis appearing more severe. Similarly, the valve
stenosis appeared more severe when assessed using valve
resistance or ELCo. In contrast, the valve stenosis appeared less
severe when assessed using % LVSW loss.

Previous studies investigating the effect of BP and SVR on the
measurement of AS severity have been contradictory.28–30

Transvalvular pressure gradient increased with increasing systolic
pressure and SVR in an in vitro model using an aortic
bioprosthesis and constant transvalvular flow rate.30 In contrast,
other investigators have suggested that the change in transvalv-
ular pressure gradient is inversely related to the change in
SVR,28 29 42 irrespective of flow.28 However, the equation28 predict-
ing a ‘‘flow-independent’’ decrease in transvalvular pressure
gradient as a consequence of increased SVR contains both

pressure and resistance variables that are inter-related by flow,
and are thus not truly flow independent.29 30 We observed no
change in DPmean during the acute increase in BP and SVR,
despite a small decrease in transvalvular flow. The failure of
DPmean to decrease despite reduced transvalvular flow was
because of a small decrease in AVA. Decreased transvalvular
flow results in reduced valve-opening forces and a smaller AVA,
and, since DPmean a (Qmean/AVA)2, a smaller AVA would
attenuate the expected decrease in DPmean as a result of reduced
Qmean.5 6 9 Our in vivo observations are consistent with those in an
animal model of supravalvular AS, in which DPmax and DPmean

were dependent only on the stenosis area and transvalvular flow,
and not dependent on SVR or SAC.29 Non-simultaneous peak LV
pressure to peak aortic pressure differences derived at catheter-
isation may be affected by arterial compliance independent of
transvalvular flow29; however, this pressure difference cannot be
measured using Doppler-echo.

Table 2 Comparison of haemodynamic data at baseline, intervention and recovery in the
total cohort (n = 22)

Variable Baseline Intervention Recovery

Haemodynamic variables
Heart rate (bpm) 62 (8) 67 (12)* 62 (13)
Systolic BP (mm Hg) 143 (14) 181 (20)� 136 (15)*
Diastolic BP (mm Hg) 77 (9) 92 (8)� 75 (8)
Mean BP (mm Hg) 99 (8) 121 (10)� 96 (7)*
Stroke volume (ml) 104 (19) 100 (22) 103 (19)
Qmean (ml/s) 323 (67) 306 (66)* 324 (65)
Cardiac output (l/min) 6.34 (1.31) 6.55 (1.51) 6.16 (1.22)
SAC (ml/mm Hg) 1.66 (0.47) 1.16 (0.31)� 1.82 (0.60)*
SVR (dyne6s/cm5) 1294 (264) 1552 (372)� 1280 (233)

Stenotic indices
DPmean (mm Hg) 36 (13) 36 (14) 35 (14)
AVA (cm2) 1.15 (0.32) 1.09 (0.33)* 1.17 (0.33)
Resistance (dyne6s/cm5) 153 (63) 164 (74)* 146 (62)
% LVSW loss (%) 19.8 (6.3) 16.5 (5.7)� 20.0 (7.1)
ELCo (cm2) 1.32 (0.40) 1.24 (0.42)* 1.34 (0.43)

Change from baseline
Qmean (ml/s) –17 (31) 1 (31)
DPmean (mm Hg) 0 (3) –1 (3)
AVA (cm2) –0.06 (0.11) 0.02 (0.11)
Resistance (dyne6s/cm5) 11 (21) –7 (26)
% LVSW loss (%) –3.3 (1.7) 0.2 (2.3)
ELCo (cm2) –0.08 (0.17) 0.02 (0.16)

AVA, aortic valve area; BP, blood pressure; ELCo, energy loss coefficient; % LVSW loss, percentage left ventricular stroke
work loss index; DPmean, mean transvalvular pressure gradient; Qmean, mean transvalvular flow rate; SAC, systemic
arterial compliance; SVR, systemic vascular resistance.
Values in parentheses are the SD.
*p,0.05 vs baseline.
�p,0.001 vs baseline.
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Figure 2 Individual changes in mean transvalvular flow rate (Qmean, panel A), mean transvalvular pressure gradient (DPmean, panel B) and aortic valve
area (AVA, panel C) at baseline, peak blood pressure intervention and recovery in the 22 patients.
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In an in vitro model with a constant transvalvular flow rate,
AVA derived by the Gorlin equation decreased with increasing
systemic pressure and SVR.30 In contrast, both the Gorlin and
continuity equation AVA increased when hypertension was
induced in an animal model of supravalvular AS.29 In the
current study, we observed a decrease in AVA with increased
BP and SVR. The decrease in AVA probably occurred as a
consequence of the concomitant decrease in transvalvular flow
with the acute increase in BP. The change in Qmean was the only
independent predictor of the change in AVA. Change in BP,
SVR and SAC had no independent effect on the change in AVA.
Previous studies have demonstrated a strong linear relationship
between AVA and Qmean,5 9 probably related to flow-mediated
changes in the anatomic area of the valve stenosis or flow-
mediated modification of the coefficient of orifice contrac-
tion.3 4 19 43–45 However, from our study, it is not possible to
determine whether the mechanism of the observed change in
AVA was primarily related to a change in the anatomic valve
area, coefficient of orifice contraction, flow profiles within the

outflow tract or vena contracta, or a combination of these
phenomena. The discrepancy between the observed decrease in
AVA with an increase in BP, and the observed increase in AVA
in an animal model of supravalvular AS can probably be
explained by expansion of the supravalvular stenosis due to
increased radial pressure, which does not occur with valvular
stenoses.29 Importantly, the change in trans-stenotic flow rate
in this animal model was an independent predictor of the
change in stenosis area, consistent with our observation.29

Valve resistance, ELCo and % LVSW loss were also affected by
the change in BP. Acute increase in BP and SVR resulted in the
valve stenosis appearing more severe when assessed by valve
resistance and ELCo. The change in Qmean was the only
independent predictor of the change in valve resistance and
ELCo, similar to AVA. In contrast, the acute increase in BP
resulted in the valve stenosis appearing less severe when
assessed by % LVSW loss. Not surprisingly, the change in SBP
was inversely related to the change in % LVSW loss, since SBP
is in the denominator of the % LVSW loss equation. Larger
reductions in transvalvular flow as a consequence of acute
increase in BP could potentially lead to greater reductions in %
LVSW loss, since transvalvular pressure gradient, incorporated
in the numerator of the % LVSW loss equation, has a strong
relationship with transvalvular flow.5–7 9 Clearly, none of these
alternative stenotic indices can be relied upon to provide a
constant measure of AS severity during a change in BP or
transvalvular flow; however, the impact on the assessment and
interpretation of AS severity will depend on the specific stenotic
index used.

Clinical implications
In patients with AS, we observed that (1) acute hypertension
can affect Doppler-echo indices of AS severity, and that (2) the
change in AS severity with a change in BP is a consequence of
concomitant changes in transvalvular flow, rather than an
independent effect of systemic arterial haemodynamics (ie,
SVR or SAC). The observation that the indices of AS severity are
affected by changes in BP has important implications for the
haemodynamic assessment of patients with AS with hyperten-
sion and patients undergoing serial evaluation of disease
severity. Haemodynamics including BP and transvalvular flow
should be recorded as part of each evaluation, and differences
in haemodynamics considered as a potential explanation for a
change in AS severity independent of disease progression.
Although the change in average AVA with the acute increase in
BP and SVR was small (1.15 to 1.09 cm2), the individual

Figure 3 Distribution of mean transvalvular pressure gradient (DPmean, panel A) and aortic valve area (AVA, panel B) at baseline, peak blood pressure
intervention and recovery in the 22 patients.
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patient response was variable (–0.26 to +0.11 cm2 of baseline
AVA). In all, 5 (23%) patients had a change in AVA resulting in
a reclassification of AS severity according to American College
of Cardiology/American Heart Association Task Force on
Practice guidelines.1 Even greater changes in AVA (–0.26 to
+0.26 cm2 of baseline AVA) were found when analysing in both
the intervention and recovery periods, when the BP was lower
(fig 6). Although the presence of symptoms is the major
determinant for surgical intervention, the magnitude to which
AVA can change in a patient (ie, 0.9 vs 1.15 cm2) can clearly
affect clinical decision making, especially in ‘‘grey’’ areas,
where the symptom status of a patient may be unclear, or when
evaluating the need for concomitant valve replacement in
patients with milder degrees of AS undergoing coronary artery
bypass graft surgery. Furthermore, the observed change in AVA
is of a magnitude similar to the expected annual rate of
haemodynamic progression (<0.1 cm2/year). Thus, a patient
could be diagnosed as a ‘‘rapid progressor’’ as a result of
different haemodynamics at the time of the assessment rather
than actual disease progression.39 Importantly, greater BP and
associated transvalvular flow changes could result in greater
perturbations in AVA, due to the linear relationship between
these haemodynamic variables and AVA. Repeating the Doppler
echocardiographic evaluation in patients with hypertension
after normalisation of the BP may provide measurements that
better reflect the severity of the valve stenosis and better
identify actual disease progression during the follow-up
studies.2

Potential limitations
We used models of acute increase in BP due to increased SVR to
investigate the impact of BP on the assessment of AS severity.
These models were not chosen for their ability to ‘‘mimic’’ the
diverse pathophysiologies of hypertension. Rather, they were
employed for their ability to affect predominantly BP and SVR,
with little confounding effect on heart rate and transvalvular
flow. Although these models may reflect the haemodynamics and
define the expected impact of BP on the assessment of AS severity
in clinical settings associated with an acute increase in BP due to
increased SVR (ie, anxious patient undergoing catheterisation),
they may not reflect the haemodynamics and impact of a change
in BP in patients with a gradual BP increase or chronic
hypertension. Chronic hypertension can be associated with either
increased or decreased cardiac output, depending on the specific
aetiology and time course within the disease.46 In these chronic
settings, the impact of BP on the assessment of AS severity may
differ, depending on whether there is an associated increase or
decrease in transvalvular flow. Ultimately, the concomitant
change in transvalvular flow that occurs with a change in BP
will determine the effect on the Doppler-echo assessment of AS
severity, with the stenosis appearing more severe if there is a
decrease in transvalvular flow, and less severe if there is an
increase in transvalvular flow.

CONCLUSION
Doppler-echo assessment of AS severity is dependent on the
systemic BP at the time of haemodynamic assessment. Acute

Figure 5 Distribution of valve resistance (panel A), energy loss coefficient (ELCo, panel B) and percentage left ventricular stroke work loss (% LVSW loss,
panel C) at baseline, peak blood pressure intervention and recovery in the 22 patients.

Figure 6 Scatter plot of the relationship between the change in aortic valve area (AVA) and the change in mean blood pressure (BP, panel A) and change
in mean transvalvular flow rate (Qmean, panel B) in the 22 patients.
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hypertension due to increased SVR and associated with a
decrease in transvalvular flow can lead to a valve stenosis
appearing more severe when assessed by AVA, valve resistance
or ELCo, and less severe when assessed by % LVSW loss.
However, the impact of BP on the assessment of AS severity
depends primarily on the associated change in transvalvular
flow rather than on the systemic arterial haemodynamics, and
can lead to a stenosis appearing either more or less severe
depending on the direction and magnitude of the change in
transvalvular flow.
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Endocarditis of left ventricular apical patch with cavity formation

A
n 82-year-old man was admitted for septic fever and
chills in May 2005. He had undergone coronary artery
bypass grafting and aneurysmectomy of the left ventri-

cular apical aneurysm in September 2004. Since January 2005,
he had complained about episodes of night sweating, fever with
chills and fatigue. Antibiotics prescribed by the general
physician had no effect.

Several separate sets of blood cultures done after admission
were positive for Staphylococcus epidermidis, resistant to methi-
cillin. Echocardiography showed poor two-dimensional image
quality. Cardiac magnetic resonance revealed apical pseudoa-
neurysm (32617636 mm) overlying the implanted patch, with
a small intermittent shunt between left ventricular and
pseudoaneurysmal cavity (panel A). Nevertheless, another
oval-shaped cavity (32618640 mm) was observed distally to
the pseudoaneurysm (panel B). Both cavities were filled with
blood clots. Yet, a small bidirectional blood flow was noted
between both spaces (data supplement movie clip is available
online at http://heart.bmj.com/supplemental). After intensive

antibiotic treatment, inflammatory markers and white blood
cell count were normalised and blood cultures were repeatedly
negative. After discharge, the patient did not show any signs of
relapse at regular follow-ups.
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Panel A shows an irregular space
between the apical patch and
pericardium, which represents apical
pseudoaneurysm (arrow). Apical
pseudoaneurysm may develop after left
ventricular aneurysmectomy and, usually,
does not require any specific treatment.
Panel B shows an oval-shaped cavity
connected with pseudoaneurysm (arrow).
This finding is clear pathology and may
be related to Staphylococcus infection.
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